

Part 1: Andrew Riche

Wheat Genetic Improvement Network

Background

- Paragon x Garcia mapping population, 177 lines + parents
- 9 Paragon library NILs also included
- Soissons used at edges and within expt. 44 plots, both irrigated and unirrigated.
- JIC Church Farm, Bawburgh, nr Norwich

25/05/17 (8:47-15:33 GMT) 05/07/18 (9:25-15:44 GMT)

Flight	Start Time	Interval (min)	Start Time	Interval (min)
1	08:47		8:56	Failed
2	9:38	50	9:25	
3	10:40	62	10:26	61
4	11:14	34	11:27	61
5	11:58	44	12:40	73
6	13:16	78	13:26	46
7	14:03	46	14:31	65
8	(14:46 Data lost)	42	15:11	40
9	15:33	48	15:44	33

Also 1 RGB+NIR flight on each date

Thermal image processing

Drought trial Thermal imaging

Approximate locations

Shallow EC Oct 2013 0-40cm

Results 2017 (Time GMT)

Irrigated side heats up more slowly, then cools quicker than the rain-fed.

TEMP 19.45 - 19.5 19.51 - 19.75 19.76 - 20.0 20.01 - 20.25 20.26 - 20.5 20.51 - 20.75 20.76 - 21.0 21.01 - 21.25 21.26 - 21.5 21.51 - 21.75 21.76 - 22.0 22.01 - 22.25 22.26 - 22.5 22.51 - 22.75 22.76 - 23.0 23.01 - 23.25 23.26 - 23.5 23.51 - 23.75 23.76 - 24.0 24.01 - 25.0 25.01 - 26.0 26.01 - 27.0 ROTHAMSTED

RESEARCH

Results 2018 (Time GMT)

Canopy lemperature

14:38

15:50

13:26

18 08:38

09:50

11:02

12:14

Time (GMT)

Canopy temperature tracked air temperature 2017:

- Ambient temperature 25 to 30^o
- Rainfed plots higher temperature than irrigated (about 1degree)

2018:

- Rain-fed plot's temperature closer to ambient than 2017
- Garcia higher than Paragon
- Several irrigated lines had a lower temp at 14:24 than at 9:25
- Ambient temperature 27 to 32⁰
- Both yrs, at about 13:30, ambient temperature increased but canopy temperature decreased – greater resolution of ambient temperature may discount this

opy temperature

(10

2018

ar

Results

Within year correlations

Between years:

Effect of irrigation:

Rothamsted Malcolm Hawkesford March Castle Nicolas Virlet

University of Wroclaw Adam Michalski

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

JIC Simon Griffiths Clare Lister Cathy Mumford Simon Orford

Paragon x Garcia Drought Trials

WGIN Management Meeting

14/2/2019

Clare Lister and Simon Griffiths, JIC Andrew Riche, Malcolm Hawkesford and the Drone Team, Rothamsted

for Environment

Food & Rural Affairs

Introduction

- Aim was to look at the effect of spring drought
- 3 x Trials 2016/2017/2018
- 177 PxG RILs enriched for *Ppd*-sensitive (from total population size = 356)
- Nine Paragon Library lines
- Paragon and Garcia controls, plus Soisson
- 2 reps Irrigated (IR)
- 2 reps Not Irrigated (NI) (= Rain-fed)
- 800 plots in total each trial
- Usual field phenotyping (stage 31, booting, flowering, height)
- Harvest and post-harvest measurements (YLD, SW, TGWT, grains / m²)
- Soon to do NIR
- QTL mapping
- Rothamsted (and JIC) drone

Trial Layout and Lines

Department for Environment Food & Rural Affairs

Wheat

Genetic Improvement Network

SLOPE

Canopy Temperature 28/5/2017

Department for Environment Food & Rural Affairs

Wheat

Genetic

Improvement Network

Canopy Temperature 5/7/2018

Ambient-corrected canopy temp 2018 IR

Department for Environment Food & Rural Affairs

23

Wheat

Genetic

Improvement Network

Canopy temp - Not Irrigated 2018

Ambient-corrected canopy temp 2018 NI

Canopy Temperature 5/7/2018

Department for Environment Food & Rural Affairs

Wheat

Genetic

Improvement Network

QTL mapping Canopy Temp @ 11.27

Mean of Not-Irrigated plots in 11.27 flight 2 QTLs (above threshold)

Mean of Irrigated plots in 11.27 flight NO QTLs (above threshold)

QTL effects: additive (blue=Parent 1 ; yellow-red=Parent 2)

QTL mapping Canopy Temp @ 11.27

s.e.

0.080

0.078

229.900

Mean of Not-Irrigated plots in 11.27 flight – 2 QTLs

additive (blue=Parent 1 ; yellow-red=Parent 2)

Wheat

Genetic

Improvement Network

Trait: %2018_Ter	npNI								
List of QTLs									
	Locus	Locus	Linkage	Position	-log10(P)				
	no.	name	group						
	401	TG0011b	4D	37.06	4.402				
	454	Excalibur_c27357_146	5A	223.86	4.797				
QTL effects	QTL effects								
	Locus	Locus	%Expl.	Add.	High value				
	no.	name	Var.	eff.	allele				
	401	TG0011b	10.018	0.337	Garcia				
	454	Excalibur_c27357_146	10.601	0.346	Paragon				
Estimated lower	and upper bounds	of QTL positions							
0±3	Locus	Locus	Lower	Position	Upper				
S.S.S.	no.	name	bound		bound				
Department	401	TG0011b	29.246	37.060	44.874				
for Environment Food & Rural Affairs	454	Excalibur_c2735	57_146	216.546	223.860				

QTL mapping of the Canopy Temp Dip

23

Irrigated 2018 - RAW data

Ambient-adjusted 2018 IR

Ambient-adjusted 2018 NI

QTL mapping of Canopy Temp IR

Test profile: %14_31_IR

QTL mapping of Canopy Temp @ 9.25

1A 1B 1D 2A 2B 2D 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D 7A 7B 7D

Chromosome

1

Department for Environment Food & Rural Affairs

Wheat

Genetic

Improvement

QTL mapping of Canopy Temp @ 14.31 NI

additive (blue=Parent 1 ; yellow-red=Parent 2)

Summary

Trait: %14_31_NI

List of QTLs

	Locus	Locus		Linkage	Position	log10	(P)	
	no.	name		group				
	495	BobWhi	te_c28333_	_454	5B	138.23	3.859	
QTL effe	ects							
	Locus	Locus	%Expl.	Add.	High valu	es.e.		
	no.	name	Var.	eff.	allele			
	495	BobWhi	te_c28333_	_454	9.171	0.277	Garcia	0.071

AND

Department for Environment Food & Rural Affairs

- -

ohn Innes Centr

QTL mapping of Canopy Temp 9.25 (F1)-14.31 (F6)

Department for Environment Food & Rural Affairs

Summary of 2016-2018 Yield QTLs

2016 Spring Ra	in, litt	le Summ	ner Dro	ought		2017 Severe spring Drought, some Summer Drought						2018 Spring Rain, severe Summer Drought						
	Chr	% expl var		QTL name			Chr	% expl var		QTL name			Chr	% expl var		QTL name		
TGWT NI	1A	18.2	Gar	Q1A-1		TGWT NI	1A	14.6	Gar	Q1A-1		TGWT NI	1A	13.3	Gar	Q1A-1	NIL production	
TGWT IR	1A	15.0	Gar	Q1A-1								TGWT IR	1A	10.8	Gar	Q1A-1	NIL production	
						YLD IR	1A	11.4	Gar	Q1A-2								
						SW IR	1A	5.0	Gar	Q1A-2								KEY
						SW NI	2B	11.3	Gar	Q2B-1	1						Ppd-B1	KET
						SW IR	2B	9.4	Gar	Q2B-1	1						Ppd-B1	Garcia increasing allele
						Grains / m2 IR	2B	16.2	Par	Q2B-1	4	Grains / m2 IR	2B	9.5	Par	Q2B-1	Ppd-B1	Paragon increasing allele
												Grains / m2 NI	2B	10.6	Par	Q2B-1	Ppd-B1	
SW NI	2B	9.0	Gar	Q2B-2							ł	SW NI	2B	6.1	Gar	Q2B-2	NIL production	IR = Irrigated plots
	-					YLD NI	2B	17.7	Gar	Q2B-2	-	YLD NI	2B	16.6	Gar	Q2B-2	NIL production	NI - Net injected plots
						YLD IR	2B	17.0	Gar	Q2B-2	-	YLD IR	2B	13.9	Gar	Q2B-2	NIL production	NI = Not-Irrigated plots
Grains / m2 NI	2D	14.9	Gar	Q2D-1							-							
SW NI	3A	6.1	Par	Q3A-1														YLD = Yield
TGWT NI	3B	4.5	Gar	Q3B-1							-							SW = Specific Wt
SW NI	4D	29.2	Par	Q4D-1		SW NI	4D	33.7	Par	Q4D-1	ł	SW NI	4D	28.5	Par	Q4D-1	Rht	TGWT = 1000 Grain Wt
SWIR	4D	38.1	Par	Q4D-1		SWIR	4D	33.0	Par	Q4D-1	ł	SWIR	4D	37.1	Par	Q4D-1	Rht	
TOWER	40	5.2	Dor		1	TGWIN	4D	10.0	Par	Q4D-1	ł	TOWN	10				Rht	Grains / m2 = Yield/TGWT
IGWIK	40	5.2	Pdi	Q4D-1		Croins (m2 NI	40	16.7	Par	Q4D-1	-	Croins (m2 NI	4D	11.1	Par	Q4D-1	Rht	
					1	Grains / m2 IR	4D	25.4	Gar	Q4D-1	ł	Grains / m2 IR	4D	12.7	Gar	Q4D-1	Rht	% expl var >10%
Grains / m2 IR	54	0.0	Gar	054.1		Grains / m2 IR	54	0.6	Gar			Grains / Inz In	40	15.7	Gai	Q4D-1	KIIL	
TGWT NI	5A	6.3	Gar	054-2				5.0		0,071								
TGW IR	5A	6.5	Gar	Q5A-2	1						t							
SW IR	5A	6.8	Par	Q5A-2	1						1							
SW NI	5A	2.5	Gar	Q5A-3														
SW IR	5A	7.0	Gar	Q5A-3]						1							
						TGWT NI	5A	5.0	Gar	Q5A-3]							
						TGW IR	5A	7.1	Gar	Q5A-3								
						TGWT NI	5B	8.4	Gar	Q5B-1		TGWT NI	5B	10.7	Gar	Q5B-1	QTL of ir	nterest
TGW IR	5B	14.2	Gar	Q5B-1		TGW IR	5B	9.2	Gar	Q5B-1		TGW IR	5B	14.6	Gar	Q5B-1		
						Grains / m2 NI	5B	7.1	Par	Q5B-2								
												YLD IR	6A	8.9	Gar	Q6A-1	OTL of ir	nterest
						TGWT NI	7A	12.3	Gar	Q7A-1		TGWT NI	7A	7.7	Gar	Q7A-1		
						TGW IR	7A	8.2	Gar	Q7A-1								
Grains / m2 NI	7A	12.0	Par	Q7A-1		Grains / m2 NI	7A	7.8	Par	Q7A-1		Grains / m2 NI	7A	10.7	Par	Q7A-1		
YLD NI	7B	16.8	Gar	Q7B-1														
						SW NI	7D	5.2	Gar	07D-1								

John Innes Centre

Department for Environment Food & Rural Affairs ROTHAMSTED RESEARCH

Network Chr6E Chr6D ер_Ки_с2677_580909H во Бх нер с102106 67486621 -ft-2455,000 p.R.R._Contg2606_2364492 £: 128824 - 23668, 243 200515136, 51 100, Ex., 200120, 42012037 461, 271960, 427 403175, yap., 2116173, 605 850001640 51 mp Ex c1262 21046 wp Ex c19082 27999214 no Fa c1219 209809 the differ ACETE (6807 168 Q5A-4 33 **Q5B-2** Q5A-3 agelbur - 10091 52 240 -250 -250 -250 -250 -250 -250 -250 -350 -290 -BEL Control to option 290 -400 -410 -420 -Ming Ex ct13225 90219386 Ming Ex wp dbeCh separate (\$020,288) No. 10/017 270 12 AP11 rep.pd:51_190310 7m23 716 undgi 7500 am MURC FX CITEN 2000183 4128,310 013,005 A CE75 Hep c10/068 200 100 100 10. 3070 1001_1020 103606 (\$6) un contel+911 179 Ex c10193 16730 20 hite_c193 468702 6702638 0106_1177 CAFT_c3650 c30267_538 TaCPS **Yield QTL Thermal + Yield Comp QTL Thermal QTL**

Thermal + Flowering QTL

Department for Environment Food & Rural Affairs

Wheat

Genetic

mprovement

Subset of Paragon Library in Drought Trials

Paragon	
Lr19 Kamb1	Alien introgression*
Par Mutant 2316b	Staygreen
Ppd 1x Early	DTEM
Ppd 2x Early	DTEM
Ppd 3x Early	DTEM
Ppd KO 2x	DTEM
Rht 8 Mara	Height
Rht B1 Robigus	Height
Rht D1 Alchemy	Height

*Leaf rust resistance gene on 7DL, derived from *Agropyron elongatum*

Rep 2 is particularly poor in 2018!

Wheat

Genetic

We are not just looking at Spring Drought!

Drought trial drilled again in October 2018....

Department for Environment Food & Rural Affairs

BYDV and wheat

Dr Gia Aradottir

Cereal aphids & Barley Yellow Dwarf Virus

Bird cherry-oat aphid

English grain aphid

WGIN Diversity trial - field

- 1 Avalon
- 2 Barrel
- 3 Cadenza

4 Claire

- 5 Crusoe
- 6 Graham
- 7 Hereward
- 8 Hylux
- 9 Istabraq
- 10 Malacca
- 11 Maris Widgeon

12 Mercia

- 13 Paragon
- 14 Robigus
- 15 Riband
- 16 Siskin
- 17 Soissons
- 18 Solstice
- 19 Xi19
- 20 Zyatt

WGIN Diversity trial - glasshouse

- Replicate of lines in the field
- Infected with BYDV-PAV
- 1st visual and Taqman assay
 1 week after infection
- Plants in the vernaliser
- Scoring
 - Visual symptoms
 - Molecular markers
 - Agronomic traits

A real-time PCR assay for detecting BYDV in cereal aphids

Colony virulence

- Ability of different aphid colonies to take up and transmit BYDV
- Need MAV in culture & more colonies

Ramiro Morales- Hojas Molecular Ecologist

- Next 20 lines (selected from aphid phenotyping)
- Others if nominated
- Sample diversity trial for taqman assay
- Visit farmers for BYDV sampling (AHDB)

Rothamsted Research where knowledge grows

Resilience to foliar and root fungal pathogens

Vanessa McMillan

Department for Environment Food & Rural Affairs

WGIN MM 14th February 2019

- Resistance to septoria leaf blotch
- Resistance to yellow rust
- 3N ancestral introgression rooting trait
- Resistance to take-all disease in *Triticum monococcum*
- *mlo* mediated resistance to powdery mildew

- Discovered in Barley in 1930s/1940s
- Loss-of-function mutations in Mildew resistance locus (*Mlo*) gene confers recessively inherited resistance against powdery mildew
- Non-race specific/broad spectrum
- Widely used in spring barley breeding programmes since 1970s/1980s
- Durable resistance; effective for > 30 years

Pleiotropic effects

- Increased resistance to the hemibiotrophic oomycete *Phytophthora palmivora* (in young leaf sections only) Le Fevre *et al.* 2016. MPMI
- Increased susceptibility to rice blast fungus *Magnaporthe grisea, Fusarium graminearum* and *Ramularia collo-cygni* under glasshouse conditions Jarosch *et al.* 1999. MPMI. Jansen *et al.* 2005. PNAS. McGrann *et al.* 2014. J Exp Bot.
- Early leaf senescence > leaf chlorosis and necrosis > seen in both glasshouse and field conditions > impact on yield? Wolter *et al.* 1993. Mol Gen Genet. Makepeace *et al.* 2007. Plant Pathol.

mlo based resistance is effective in many plant species

Psmlo1 (er1-1) Camlo2 RNAI Rhmlo1 RNAI cv. Kokubu Simlo1 (ol-2) Tamlo1 aabbdd

Kusch and Panstruga (2017) MPMI

TILLING wheat for mlo mediated mildew resistance

Funders: German Federal Ministry of Food and Agriculture

doubles

triple

Germany Society for the Advancement of Plant Innovation

mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach

Johanna Acevedo-Garcia¹, David Spencer¹, Hannah Thieron¹, Anja Reinstädler¹, Kim Hammond-Kosack², Andrew L. Phillips² and Ralph Panstruga¹*

2017/18 Spring sown multiplication field trial

- 18 selected double and triple mutants (single replicate, 30 seeds)
- Replicated plots of Cadenza wildtype
- Foliar disease observations
- Ear emergence and plant heights

6 Cadenza plots, 4 double mutants, 14 triple mutants

Many genotypes started flowering before full ear emergence due to drought conditions

Cadenza = earlier flowering that double or triple mutants

Senescence

Cadenza plots much more senesced...related to earlier ear emergence?

Impact of drought?

Plant Height

6 Cadenza plots, 4 double mutants, 14 triple mutants

Wildtype Cadenza slightly taller?

Powdery Mildew

Leaf 2

Low powdery mildew disease pressure

Trend for a reduction in powdery mildew infection for double and triple mutants

Brown Rust

Leaf 2

Overall relatively low brown rust disease levels across field trial

A couple of triple mutants with relatively high brown rust scores – perhaps due to location in trial?

Yellow Rust

Leaf 2

Some doubles and triples with higher yellow rust infection

2019 and 2020

Replicated field trials (4 replicates per mutant line) to explore the double and triple lines susceptibility/resistance to additional pathogens (as a winter crop) – yellow rust, brown rust, septoria and fusarium

Leaf senescence and other morphological differences to be assessed

Trials drilled 23rd October 2018

Delayed plant emergence

18th January 2019

Most lines have at least 2 leaves fully emerged Some plots with only one leaf half emerged No sign of rabbit or bird damage

Mutants with slow plant emergence

Poorly emerged treatments	MLO genotype	Line	Tamlo-A1	Tamlo-B1	Tamlo-D1
34.2-33 (8 replicates)	aabbdd	1	P324L	G318R	P334L
36.2-30 (4 replicates)	aabbdd	1	P324L	G318R	P334L
40.3-30 (6 replicates)	AAbbdd	2	WT	G318R	G318R
52.3-82 (8 replicates)	aabbdd	4	P324L	T296I	P320S

- Phenotype very consistent across replicates and field sites
- Does not seem to be related to mutant allele combinations
- Effect of background mutations?

Many thanks to

Kim Hammond-Kosack Kostya Kanyuka Mike Hammond-Kosack Gail Canning Carlos Bayon Tania Chancellor (2nd year PhD student) Jessica Hammond (Plant Pathology Apprentice)

Summer students

Erin Baggs (2015) Eleanor Leane (2015) Tessa Reid (2015) Laurie Neal (2015,2016&2017) Alex Chambers-Ostler (2016) Leanne Freeman (2016,2017&2018) Jamie Hawkesford (2017) Ellen Farnham (2017&2018) Georgie Halford (2018) Eoin Canning (2018) Niamh Kavanagh (2018)

Rodger White and Stephen Powers - statistics

RRes Farm and glasshouse staff

Triticum monococcum Introgression

WGIN MM February 14th 2019

Michael Hammond-Kosack

Crossing Strategy – Tetraploid Wheat as a Bridging Species

Fertile F₁Complex Plants generated in stage 2 and pollinated in stage 3

Comparison of Hoh501 vs Kronos as mother

1. Grain setting

		к	íronos	Hoh5	501	Hoh501/Kronos			
		grains	fertility	grains	fertility	grains (n-fold difference)	fertility (n- fold difference)		
	Tdur x Tm =	8.00	lotting	8					
stage 1	F1_hybrids	35	3.37%	100	8.31%	2.9	2.5		
	F1_hybrids x Taes =								
stage 2	F1C	9	0.46%	25	0.27%	2.8	0.6		
	F1C x Taes =								
stage 3	F1C_BC1	21	3.45%	152	16.96%	7.2	4.9		

2. pre-germination

Hoh501	30% (28/94) after 5 days
Kronos	60% (13/22) after 4 days

Phenotypes Observed in F₁ Hybrid and F₁ Complex Plants

Disrupted ear architecture

extending spikelet

additional leaf: both on F1-hybrid (L) & F1C plants (R)

generation of F₁C-BC₁ grains (stage 3)

Increase in fertility

Hoh501 as mother

WGIN Promotome Capture

WGIN MM February 19th 2019

Slides below provided by Chris Burt, RAGT

Import .vcf and .BAM files into IGV for varieties with different alleles of targeted major gene

IGV	racks Regions Tools Genor	neSnace Heln				Paget	and the	and the second second				1 23
161010_Chinese_Spring_v1	v chr5A_part2 v	dw5A_part2	Go 👚	• • 🕸 🗖	1 × 🖵 I							+
OA.vef Galay713.jGalm.vefj.vefvef GLvef Galay721.jGalam.vefj.vefvef VIGA/vef Galay727.jGalm.vefj.vefvef HW/vef Galay905.jGalm.vefj.vefvef						100 mb 		255 mb				
KSA.bam Coverage KSA.bam								Zoom in to see co Coom in to see alig	rerage. nments.			*
												-

~1Mb region including targeted major gene

🛗 IGV								<u>له او م</u>
File Genomes View Trac	cs Regions Tools GenomeSpace Help							
161010_Chinese_Spring_v1	✓ drrSA_part2 ✓ drrSA_part2:129,240,407-139,147,097 Go	► 🕸 🗖 X 📮 I						
								^
			0.060 kb					
	120 000 kb 131 000 kb 133	000 kb 133 000 kb	134.000 kb	135 000 kb	135 000 kb	137.000 kb	138.000 kb	139.000 k
OA.vof								^
Galaxy713-[Galm.vcf].vcf.vcf								
CL.vef								
Galaxy/21-[Galaam.vet].vet.ve			1 1 1					
KSA.vef			· · · ·					
Galaxy761-[Galm.vcf].vcf.vcf	Lines that have							
GT wef	Lines that have		1 1 1					
	nocitivo allolo for							
Galaxy707-[Galm.vof].vof.vof	positive allele for							
HW.vef	1		· · · ·	1				
Galaxy605-[Galm.vof].vof.vof								
	Ŭ							
					SNP lin	ked to no	nsitive	
					5111	incu to pr	June	
						(
								-
KSA.bam Coverage			Zoom in to see coverage					^
KSA.bam			Zoom in to see alignments	5,				
								-
Zoom into SNPs in the region to see read information in BAM tracks.

IGV				Reariance Mon	and from the second second				
File Genomes View Trac	ks Regions Tools GenomeSpace H	Help		1					
Switch the current geno	ome								
	4								
	000 bp 134,193,200 bp	134,193,400 bp	134,193,600 bp	134,193,800 bp	134,194,000 bp	134,194,200 bp	134,194,400 bp	134,194,600 bp	134,194,800 bp 134,15
		-			1 1				
OA.vef		1	1	I		I			
Galaxy713-[Galm.vcf].vcf.vcf									
CL.vef									
Galaxy721-[Galaam.vof].vof.vo		1							
K\$A.vcf		1		1 1		1			
Galaxy761-[Galm.vef].vef.vef									
GT.vof		1		1 1		1			
Galaxy707-[Galm.vcf].vcf.vcf									
HW.vef		I	I	1 1		I			
Galaxy605-[Galm.vof].vof.vof									
KSA.bam Coverage	(0 - 110)								
KSA.bam									
Sequence 🗕									

IGV	-						Name and Address of	-	a
File Genomes View Trac	ks Regions Tools	GenomeSpace Help							
161010_Chinese_Spring_v1	✓ chr5A_part2	 chr5A_part2: 134, 193, 724-134, 1 	193,798 Go	1	► 🕏	🔲 X 🏳	I		
Switch the cu	rrent genome								
									76 hr
	-	134.193.730 bp	134,193,740	bp		134.193.750 b	a	13	4.193.760 bp
			i		- 1	i	. <u> </u>		1
0.4 ml						<u></u>		•••	
UA.vet						SN	P linked to	posit	ive allele?
Galaxy713-[Galm.vcf].vcf.vcf									
CL.vcf									
Galaxy721-[Galaam.vcf].vcf.vc									
KSA.VCT									
Galaxy761-[Galm.vcf].vcf.vcf		Lines that have							
GT.vcf		positive allele fo	r the						
Galaxy707-[Galm.vcf].vcf.vcf		gono	- the						
		gene							
HW.vcf									
Galaxy605-[Galm.vcf].vcf.vcf									
KSA.bam Coverage	(0 - 87)								
								Ţ	
100.1		С			G				
KSA.Dam								Т	

Extract context sequence and SNP

KASP Design

Unlocking Nature's Diversity

Test KASPs on variety panels and match to known phenotype and/or presence of major gene

Marker diagnostic only in UK and German material.

SNP identified in UK material so linked to gene only in related germplasm?

Higher density SNP information would be beneficial in this case

WAKS in wheat

Thursday 14th February 2019

Kostya Kanyuka

Designing Future Wheat (WP2)

Map-based cloning of the first wheat gene – Stb6 – for resistance to Septoria tritici blotch

Nature Genetics (2018) 50: 368-74

collaboration with Cristobal Uauy (JIC) and Cyrille Saintenac (INRA)

Designing Future Wheat (WP2)

Map-based cloning of the first wheat gene – Stb6 – for resistance to Septoria tritici blotch

Nature Genetics (2018) 50: 368-74

collaboration with Cristobal Uauy (JIC) and Cyrille Saintenac (INRA)

Stb6 encodes a Wall-associated kinase (WAK) protein: the first example of this class of extracellular receptors conferring gene-for-gene resistance to a pathogen

collaboration with Cristobal Uauy (JIC) and Cyrille Saintenac (INRA)

Wheat genome contains over 600 WAK genes, some of which may correspond to other genetically defined Septoria resistance genes or confer resistance to other pathogens

	REGION	LEAD PI	CULTIVAR	PEDIGREE
De Novo Assembly	Australia	Langridge, U of A	Mace	Yuma//PI 372129/3/CO850034/4/4*Yuma/5/(KS91H184/Artin S//KS91HW29/3/NE89526)
De Novo Assembly	Australia	Langridge, U of A	Lancer	VI184/Chara//Chara/3/Lang
De Novo Assembly	Canada	C. Pozniak, P. Hucl U of S, Andrew Sharpe - GIFS	CDC Landmark	CDC Teal//EE8/Kenyon35//AC Barrie
De Novo Assembly	Canada	C. Pozniak, P. Hucl U of S, Andrew Sharpe - GIFS	CDC Landmark	Unity/Waskada//Alsen/Superb
De Novo Assembly	Germany	N. Stein, K. Meyer IPK	Julius	Julius = Asketis x Drifter
De Novo Assembly	Japan	-	Norin61	-
De Novo Assembly	Switzerland	B. Keller, U of Zurich S. Krat Abdullah University	Arina	-
De Novo Assembly	USA	Poland, K State	Jagger	KS-82-W-418/STEPHENS
Assembly WR2AP	UK	BBSRC	Cadenza	Axona x Tonic, RBP95-73, Maris Dove, HPG-522-66
Assembly W2RAP	UK	BBSRC	Paragon	CSW-1724-19-5-69 \times Axona/Tonic, introgression of diccocoides on 5B
Assembly W2RAP	UK	BBSRC	Kronos	-
Assembly W2RAP	UK	BBSRC	Robigus	1366 x Z-836
Assembly W2RAP	UK	BBSRC	Claire	Flame x Wasp,/Moulin/Taurus/Boxer/Galahad